747 Edltlon

: /ELAMSRl o NAVATHE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Chapter 12 Outline

= Overview of Object Database Concepts
s Object-Relational Features
s ODbject Database Extensions to SQL

= ODMG Object Model and the Object Definition
Language ODL

s ODbject Database Conceptual Design
= [he Object Query Language OQL
= Overview of the C++ Language Binding

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe S' [de 12-2

Object and Object-Relational
Databases

» Object databases (ODB)
= Object data management systems (ODMS)

= Meet some of the needs of more complex
applications
= Specify:
= Structure of complex objects
« Operations that can be applied to these objects

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 3

Overview of Object Database
Concepts

= Introduction to object-oriented concepts and
features

= Origins in OO programming languages
= Object has two components:
» State (value) and behavior (operations)
= Instance variables (attributes)
« Hold values that define internal state of object

= Operation is defined in two parts:
« Signature (interface) and implementation (method)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe S' [de 12-4

Overview of Object Database
Concepts (cont'd.)

= |[nheritance

=« Permits specification of new types or classes that
Inherit much of their structure and/or operations
from previously defined types or classes

= Operator overloading

» Operation’s ability to be applied to different types of
objects

« Operation name may refer to several distinct
Implementations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12-5

Object Identity, and Objects versus
Literals

= ODbject has Unique identity

= Implemented via a unigue, system-generated
object identifier (OID)

= Immutable

= Most OO database systems allow for the
representation of both objects and literals (simple
or complex values)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 6

Complex Type Structures for Objects
and Literals

= Structure of arbitrary complexity

= Contain all necessary information that describes
object or literal

= Nesting type constructors
= Generate complex type from other types
= [ype constructors (type generators):
= Atom (basic data type — int, string, etc.)
= Struct (or tuple)
= Collection

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12-7

Complex Type Structures for Objects
and Literals (cont'd.)

= Collection types:
s Set
= Bag
s List
= Array
= Dictionary
m ODbject definition language (ODL)

= Used to define object types for a particular
database application

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 8

Figure 12.1 Specifying the object types EMPLOYEE, DATE, and DEPARTMENT

I cfine type EMPLOYEE

tuple (Fname:
Minit :
Lname:
Ssn:
Birth_date:
Address:
Sex:
Salary:
Supervisor:
Dept:
define type DATE
tuple (Year:
Month:
Day:
define type DEPARTMENT
tuple (Dname:
Dnumber:
Mgr:

Locations:

Employees:
Projects:

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

string;

char;

string;

string;

DATE;

string;

char;

float;
EMPLOYEE:
DEPARTMENT;

integer;
integer;
integer;);

string;

integer;

tuple (Manager: EMPLOYEE;
Start_date: DATE;);

set(string);

set(EMPLOYEE);

set(PROJECT););

Slide 12-9

Figure 12.2 Adding OpP define class EMPLOYEE JEPARTMENT.
type tuple (Fname: string;
Minit: char;
Lname: string;
Ssn: string;
Birth_date: DATE;
Address: string;
Sex: char;
Salary: float;
Supervisor: EMPLOYEE;
Dept: DEPARTMENT;);
operations age: integer;
create_emp: EMPLOYEE;
destroy_emp: boolean;
end EMPLOYEE;
define class DEPARTMENT
type tuple (Dname: string;
Dnumber: integer;
Mgr: tuple (Manager: EMPLOYEE;
Start_date: DATE;);
Locations: set (string);
Employees: set (EMPLOYEE);
Projects set(PROJECT););
operations no_of_emps: integer;
create_dept: DEPARTMENT,;
destroy_dept: boolean;
assign_emp(e: EMPLOYEE): boolean;
(* adds an employee to the department *)
remove_emp(e: EMPLOYEE): boolean;
(* removes an employee from the department *)
end DEPARTMENT;
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 10

Encapsulation of Operations

= Encapsulation
= Related to abstract data types

= Define behavior of a class of object based on
operations that can be externally applied

= External users only aware of interface of the
operations

= Can divide structure of object into visible and
hidden attributes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 11

Encapsulation of Operations

= Constructor operation
= Used to create a new object
= Destructor operation
= Used to destroy (delete) an object
= Modifier operations
= Modify the state of an object
= Retrieve operation
= Dot notation to apply operations to object

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 12

Persistence of Objects

= Transient objects
= EXist in executing program
» Disappear once program terminates

s Persistent objects
= Stored in database, persist after program termination

= Naming mechanism: object assigned a unique name
INn object base, user finds object by its name

= Reachability: object referenced from other persistent
objects, object located through references

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 13

FIQU jefine class DEPARTMENT_SET
type set (DEPARTMENT);
operations add_dept(d: DEPARTMENT): boolean;

(* adds a department to the DEPARTMENT_SET object *)
remove_dept(d: DEPARTMENT): boolean;

(* removes a department from the DEPARTMENT_SET object *)
create_dept_set: DEPARTMENT _SET;
destroy_dept_set: boolean;

end Department_Set;

persistent name ALL_DEPARTMENTS: DEPARTMENT_SET;
(* ALL_DEPARTMENTS is a persistent named object of type DEPARTMENT_SET *)

d:= create_dept;
(* create a new DEPARTMENT object in the variable d *)

b:= ALL_DEPARTMENTS.add_dept(d);
(* make d persistent by adding it to the persistent set ALL_DEPARTMENTS *)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 14

Type (Class) Hierarchies and
Inheritance

s Inheritance

= Definition of new types based on other predefined
types
= Leads to type (or class) hierarchy
s Type: type name and list of visible (public)
functions (attributes or operations)

s Format:

« TYPE NAME: function, function, ...,
function

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 15

Type (Class) Hierarchies and
Inheritance (cont'd.)

= Subtype
= Useful when creating a new type that is similar but
not identical to an already defined type
= Subtype inherits functions

= Additional (local or specific) functions in subtype

= Example:
s EMPLOYEE subtype-of PERSON: Salary,
Hire date, Seniority
s STUDENT subtype-of PERSON: Major, Gpa

Slide 12- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and
Inheritance (cont'd.)

m Extent

= A named persistent object to hold collection of all
persistent objects for a class

s Persistent collection
= Stored permanently in the database
m [ransient collection

= EXists temporarily during the execution of a
program (e.g. query result)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 17

Other Object-Oriented Concepts

= Polymorphism of operations
= Also known as operator overloading

= Allows same operator name or symbol to be
bound to two or more different implementations

= Type of objects determines which operator is
applied
= Multiple inheritance

= Subtype inherits functions (attributes and
operations) of more than one supertype

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 18

Summary of Object Database
Concepts

Object identity

Type constructors (type generators)
Encapsulation of operations
Programming language compatibility
Type (class) hierarchies and inheritance
Extents

Polymorphism and operator overloading

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 12- 19

Object-Relational Features:
Object DB Extensions to SQL

s Type constructors (generators)
= Specify complex types using UDT
= Mechanism for specifying object identity
= Encapsulation of operations
= Provided through user-defined types (UDTS)

s Inheritance mechanisms
= Provided using keyword UNDER

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 20

User-Defined Types (UDTs) and
Complex Structures for Objects

s UDT syntax:
s CREATE TYPE <type name> AS
(<component declarations>);

= Can be used to create a complex type for an
attribute (similar to struct — no operations)

= Or: can be used to create a type as a basis for a
table of objects (similar to class — can have
operations)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 21

User-Defined Types and Complex
Structures for Objects (cont'd.)

= Array type — to specify collections

= Reference array elements using [}
s CARDINALITY function

= Return the current number of elements in an array
s Early SQL had only array for collections

= Later versions of SQL added other collection
types (set, list, bag, array, etc.)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 22

Object Identifiers Using Reference
Types

s Reference type
= Create unique object identifiers (OIDs)

= Can specify system-generated object identifiers

= Alternatively can use primary key as OID as in
traditional relational model

s Examples:
=« REF IS SYSTEM GENERATED

« REF IS5 <OID ATTRIBUTE>
<VALUE GENERATION METHOD> ;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 23

Creating Tables Based on the UDTs

s INSTANTIABLE
= Specify that UDT is instantiable

= | he user can then create one or more tables
based on the UDT

= If keyword INSTANTIABLE is left out, can use

UDT only as attribute data type — not as a basis for
a table of objects

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 24

Encapsulation of Operations

s User-defined type

= Specify methods (or operations) in addition to the
attributes

s Format:
CREATE TYPE <TYPE-NAME> (
<LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>
<DECLARATION OF FUNCTIONS (METHODS) >

) ;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 25

Figure 12.4a Illustrating some of the object features of SQL. Using UDTs as types
for attributes such as Address and Phone.

(a) CREATE TYPE STREET_ADDR_TYPE AS (

NUMBER VARCHAR (5),
STREET NAME VARCHAR (25),
APT_NO VARCHAR (5),
SUITE_NO VARCHAR (5)

e

CREATE TYPE USA_ADDR_TYPE AS (
STREET _ADDR STREET _ADDR_TYPE,
CITY VARCHAR (25),
ZIP VARCHAR (10)

)i

CREATE TYPE USA_PHONE_TYPE AS (
PHONE_TYPE VARCHAR (5),
AREA_CODE CHAR (3),
PHONE_NUM CHAR (7)

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 26

Figure 12.4b Illustrating some of the object features of SQL. Specifying UDT for

PERSON TYPE.
(b) CREATE TYPE PERSON_TYPE AS (

NAME VARCHAR (35),
SEX CHAR,
BIRTH_DATE DATE,
PHONES USA_PHONE_TYPE ARRAY [4],
ADDR USA_ADDR_TYPE

INSTANTIABLE

NOT FINAL

REF IS SYSTEM GENERATED
INSTANCE METHOD AGE() RETURNS INTEGER;
CREATE INSTANCE METHOD AGE() RETURNS INTEGER

FOR PERSON_TYPE

BEGIN

RETURN /* CODE TO CALCULATE A PERSON'S AGE FROM
TODAY'S DATE AND SELF.BIRTH_DATE */
END;

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 27

Specifying Type Inheritance

= NOT FINAL:

= The keyword NOT FINAL indicates that subtypes
can be created for that type

= UNDER
= The keyword UNDER Iis used to create a subtype

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 28

Figure 12.4c¢ Illustrating some of the object features of SQL. Specifying UDTs for
STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of PERSON_TYPE.

(c) CREATE TYPE GRADE_TYPE AS (

COURSENO CHAR (8),
SEMESTER VARCHAR (8),
YEAR CHAR (4),
GRADE CHAR

5

CREATE TYPE STUDENT_TYPE UNDER PERSON_TYPE AS (
MAJOR_CODE CHAR (4),
STUDENT_ID CHAR (12),
DEGREE VARCHAR (5),
TRANSCRIPT GRADE_TYPE ARRAY [100]

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 29

Figure 12.4c (continued) Illustrating some of the object features of SQL.
Specifying UDTs for STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of

PERSON_TYPE.
INSTANTIABLE

NOT FINAL
INSTANCE METHOD GPA() RETURNS FLOAT;
CREATE INSTANCE METHOD GPA() RETURNS FLOAT
FOR STUDENT_TYPE
BEGIN
RETURN /* CODE TO CALCULATE A STUDENT'S GPA FROM
SELF.TRANSCRIPT */
END;
%
CREATE TYPE EMPLOYEE_TYPE UNDER PERSON_TYPE AS (
JOB_CODE CHAR (4),

SALARY FLOAT,
SSN CHAR (11)
INSTANTIABLE
NOT FINAL

);

CREATE TYPE MANAGER_TYPE UNDER EMPLOYEE_TYPE AS (
DEPT_MANAGED CHAR (20)

INSTANTIABLE

)

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 30

Specifying Type Inheritance

= Type inheritance rules:
= All attributes/operations are inherited

= Order of supertypes in UNDER clause determines
Inheritance hierarchy

= Instance (object) of a subtype can be used In
every context in which a supertype instance used

= Subtype can redefine any function defined Iin
supertype

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 31

Creating Tables based on UDT

= UDT must be INSTANTIABLE
= One or more tables can be created

= Table inheritance:

« UNDER keyword can also be used to specify
supertable/subtable inheritance

=« Objects in subtable must be a subset of the
objects in the supertable

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 32

Figure 12.4d Illustrating some of the object features of SQL. Creating tables
based on some of the UDTs, and illustrating table inheritance.

(d) CREATE TABLE PERSON OF PERSON_TYPE

REF IS PERSON_ID SYSTEM GENERATED:;

CREATE TABLE EMPLOYEE OF EMPLOYEE_TYPE
UNDER PERSON;

CREATE TABLE MANAGER OF MANAGER_TYPE
UNDER EMPLOYEE;

CREATE TABLE STUDENT OF STUDENT_TYPE
UNDER PERSON;

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 33

Specifying Relationships via
Reference

= Component attribute of one tuple may be a
reference to a tuple of another table

s Specified using keyword REF
= Keyword SCOPE

= Specify name of table whose tuples referenced
= Dot notation

= Build path expressions
E —>

» Used for dereferencing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 34

Figure 12.4e Illustrating some of the object features of SQL. Specifying
relationships using REF and SCOPE.

(e) CREATE TYPE COMPANY_TYPE AS (
COMP_NAME VARCHAR (20),
LOCATION VARCHAR (20));
CREATE TYPE EMPLOYMENT_TYPE AS (
Employee REF (EMPLOYEE_TYPE) SCOPE (EMPLOYEE),
Company REF (COMPANY_TYPE) SCOPE (COMPANY));
CREATE TABLE COMPANY OF COMPANY_TYPE (
REF IS COMP_ID SYSTEM GENERATED,
PRIMARY KEY (COMP_NAME));
CREATE TABLE EMPLOYMENT OF EMPLOYMENT_TYPE;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 35

Summary of SQL Object Extensions

s UDT to specify complex types

= INSTANTIABLE specifies if UDT can be used to
create tables; NOT FINAL specifies if UDT can be

Inherited by a subtype

s REF for specifying object identity and inter-
object references

= Encapsulation of operations in UDT

s Keyword UNDER to specify type inheritance and
table inheritance

Slide 12- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

ODMG Object Model and Object
Definition Language ODL

= ODMG object model

= Data model for object definition language (ODL)
and object query language (OQL)

= ODbjects and Literals
= Basic building blocks of the object model
= Object has five aspects:

= ldentifier, name, lifetime, structure, and
creation

= Literal
= Value that does not have an object identifier

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 37

The ODMG Object Model and the ODL
(cont'd.)

= Behavior refers to operations
s State refers to properties (attributes)
= Interface

= Specifies only behavior of an object type
= Typically noninstantiable

m Class

= Specifies both state (attributes) and behavior
(operations) of an object type

= Instantiable

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 38

Inheritance in the Object Model of
ODMG

s Behavior inheritance
= Also known as IS-A or interface inheritance
= Specified by the colon () notation

s EXTENDS inheritance
= Specified by keyword extends

= Inherit both state and behavior strictly among
classes

= Multiple inheritance via extends not permitted

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 12- 39

Built-in Interfaces and Classes In the
Object Model

= Collection objects
= Inherit the basic Collection interface

m 1 = O.Ccreate i1terator ()
= Creates an iterator object for the collection
= To loop over each object in a collection

= Collection objects further specialized into:
m set, list, bag, array, and dictionary

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 12- 40

Figure 12.6 Inheritance hierarchy for the built-in interfaces of the object model.

Object
lterator Collection Date Time Interval
// Timestamp
set list bag array dictionary

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12-41

Atomic (User-Defined) Objects

s Specified using keyword class in ODL

= Attribute

= Property; describes data in an object
= Relationship

= Specifies inter-object references

» Keyword inverse

« Single conceptual relationship in inverse directions

= Operation signature:

= Operation name, argument types, return value

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 42

Figure 12.7 The (s empLOYEE

(extent ALL_EMPLOYEES
key Ssn)

{
attribute string
attribute string
attribute date Birth_date;
attribute enum Gender{M, F}
attribute short
relationship DEPARTMENT

on.

Name;
Ssn;

Sex;
Age;
Works_for

inverse DEPARTMENT::Has_emps;
void reassign_emp(in string New_dname)
raises(dname_not_valid);

{5
class DEPARTMENT
(extent ALL_DEPARTMENTS
key Dname, Dnumber)
{
attribute string Dname;
attribute short Dnumber;
attribute struct Dept_mgr {EMPLOYEE Manager, date Start_date}
Mgr;
attribute set<string> Locations;
attribute struct Projs {string Proj_name, time Weekly_hours)
Projs;
relationship set<EMPLOYEE> Has_emps inverse EMPLOYEE::Works_for;
void add_emp(in string New_ename) raises(ename_not_valid);
void change_manager(in string New_mgr_name; in date
Start_date);
%

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 12- 43

Extents, Keys, and Factory Objects

m Extent

= A persistent named collection object that contains
all persistent objects of class

s Key

= One or more properties whose values are unigque
for each object in extent of a class

s Factory object

= Used to generate or create individual objects via
Its operations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 44

Object Definition Language ODL

s Support semantic constructs of ODMG object
model

= Independent of any particular programming
language

s Example on next slides of a UNIVERSITY
database

s Graphical diagrammatic notation is a variation of
EER diagrams

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 45

Figure 12.9a An example of a database schema. Graphical notation for
representing ODL schemas.

(a) Interface

Class STUDENT
Relationships -t —» 1:N
- - »—» M:N
Interface(is-a) Class inheritance
Inheritance iInheritance using extends
using “:"

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 46

Figure 12.9b An example of a database schema. A graphical object database
schema for part of the UNIVERSITY database (GRADE and DEGREE classes are not
showm

(b) ¢ Has_faculty
Has_majors Offers
PERSON DEPARTMENT |-=
Works_in Majors_in
Offered_b
; Completed_sections SRy
FACULTY STUDENT [= COURSE
ﬁ . Registered_in A
Advises Has_sections
Students
Advisor
»" GRAD_STUDENT SECTION |[w—=—
On_committee_of Committee Of_course

| CURR_SECTION
Registered_students

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 12- 47

Figure 12.10 Possible ODL schema for the UNIVERSITY database in Figure
12.9(b). class PERSON

(extent PERSONS
key Ssn)
{ attribute struct Pname { string Fname,
string Mname,
string Lname } Name;
attribute string Ssn;
attribute date Birth_date;
attribute enum Gender{M, F} Sex;
attribute struct Address { short No,
string Street,
short Apt_no,
string City,
string ~ State,
short Zip} Address;
short Age(); }
class FACULTY extends PERSON
(extent FACULTY)
{ attribute string Rank;
attribute float Salary;
attribute string Office;
attribute string Phone;

relationship DEPARTMENT Works_in inverse DEPARTMENT::Has faculty;
relationship set<GRAD_STUDENT> Advises inverse GRAD_STUDENT::AdVvisor;
relationship set<GRAD_STUDENT> On_committee_of inverse GRAD_STUDENT::Committee;

void give_raise(in float raise);
void promote(in string new rank); };
class GRADE

(extent GRADES)
{
attribute enum GradeValues{A,B,C,D,F,, P} Grade;
relationship SECTION Section inverse SECTION::Students;
relationship STUDENT Student inverse STUDENT::Completed_sections; };
class STUDENT extends PERSON

(extent STUDENTS)
{ attribute string Class;
attribute Department Minors_in;

relationship Department Majors_in inverse DEPARTMENT::Has_majors;
relationship set<GRADE> Completed_sections inverse GRADE::Student;
relationship set<CURR_SECTION> Registered_in INVERSE CURR_SECTION::Registered_students;

void change_major(in string dname) raises(dname_not_valid);
float gpal);

void register(in short secno) raises(section_not_valid);

void assign_grade(in short secno; IN GradeValue grade)

raises(section_not_valid,grade_not_valid); };

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 48

Figure 12.10 (continued)
Figure 12.9(b).

Possible ODL schema for the UNIVERSITY database in

class DEGREE

{ attribute
attribute
attribute

string College;
string Degree;
string Year; };

class GRAD_STUDENT extends STUDENT

(extent

{ attribute
relationship
relationship
void

void

GRAD_STUDENTS)

set<Degree> Degrees;

Faculty advisor inverse FACULTY::Advises;

set<FACULTY> Committee inverse FACULTY::On_committee_of;

assign_advisor(in string Lname; in string Fname)
raises(faculty_not_valid);

assign_committee_member(in string Lname; in string Fname)
raises(faculty_not_valid); };

class DEPARTMENT

(extent
key

{ attribute
attribute
attribute
attribute
attribute
relationship
relationship
relationship

class COURSE

(extent
key

{ attribute
attribute
attribute
relationship
relationship

class SECTION

(extent

{ attribute
attribute
attribute

relationship
relationship

DEPARTMENTS

Dname)

string Dname;
string Dphone;
string Doffice;
string College;
FACULTY Chair;

set<FACULTY> Has_faculty inverse FACULTY ::Works_in;
set<STUDENT> Has_majors inverse STUDENT::Majors_in;
set<COURSE> Offers inverse COURSE::Offered_by; };

COURSES

Cno)

string Cname;
string Cno;

string Description;

set<SECTION> Has_sections inverse SECTION::Of_course;
<DEPARTMENT> Offered_by inverse DEPARTMENT::Offers; };

SECTIONS)

short Sec_no;

string Year;

enum Quarter{Fall, Winter, Spring, Summer}
Qtr;

set<Grade> Students inverse Grade::Section;
COURSE Of_course inverse COURSE::Has_sections; };

class CURR_SECTION extends SECTION

(extent
{ relationship

void

CURRENT_SECTIONS)

set<STUDENT> Registered_students
inverse STUDENT::Registered_in

register_student(in string Ssn)
raises(student_not_valid, section_full); };

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 12- 49

Interface Inheritance in ODL

s Next example illustrates interface inheritance in
ODL

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 50

Figure 12.11a An illustration of interface inheritance via “:”. Graphical schema
representation.

(a) GeometryObject

271N\

RECTANGLE TRIANGLE CIRCLE

continued on next sli

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 51

Figure 12.11b An illustration of interface inheritance via “:”. Corresponding

interface and clas ()
{ attribute

attribute
float
float
void
void

interface GeometryObiject

enum Shape{RECTANGLE, TRIANGLE, CIRCLE, ... }
Shape;

struct Point {short x, short y} Reference_point;

perimeter();

area();

translate(in short x_translation; in short y_translation);
rotate(in float angle_of_rotation); };

class RECTANGLE : GeometryObject

(extent RECTANGLES)

{ attribute struct Point {short x, short y} Reference_point;
attribute short Length;
attribute short Height;
attribute float Orientation_angle; };

class TRIANGLE : GeometryObject

(extent TRIANGLES)

{ attribute struct Point {short x, short y} Reference_point;
attribute short Side_1;
attribute short Side_2;
attribute float Side1_side2_angle;
attribute float Side1_orientation_angle; };

class CIRCLE : GeometryObject

(extent CIRCLES)

{ attribute struct Point {short x, short y} Reference_point;
attribute short Radius; };

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 12- 52

Object Database Conceptual Design

m Differences between conceptual design of ODB
and RDB, handling of:

= Relationships
= |Inheritance

= Philosophical difference between relational model
and object model of data

= In terms of behavioral specification

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 53

Mapping an EER Schema to an ODB
Schema

s Create ODL class for each EER entity type

= Add relationship properties for each binary
relationship

= Include appropriate operations for each class

s ODL class that corresponds to a subclass in the
EER schema

= Inherits type and methods of its superclass in ODL
schema

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 54

Mapping an EER Schema to an ODB
Schema (cont'd.)

» Weak entity types
= Mapped same as reqular entity types
s Categories (union types)
= Difficult to map to ODL
= An n-ary relationship with degree n > 2

= Map into a separate class, with appropriate
references to each participating class

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 55

The Object Query Language OQL

= Query language proposed for ODMG object
model

= Simple OQL queries, database entry points, and
iterator variables
= Syntax: select ... from ... where ... structure
= Entry point: named persistent object

= |terator variable: define whenever a collection is
referenced in an OQL query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 56

Query Results and Path Expressions

= Result of a query

= Any type that can be expressed in ODMG object
model

= OQL orthogonal with respect to specifying path
expressions
= Attributes, relationships, and operation names

(methods) can be used interchangeably within the
path expressions

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 57

Other Features of OQL

= Named query
= Specify identifier of named query
s OQL query will return collection as its result

= If user requires that a query only return a single
element use element operator

= Aggregate operators
= Membership and quantification over a collection

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 58

Other Features of OQL (cont'd.)

s Special operations for ordered collections
s Group by clause in OQL
= Similar to the corresponding clause in SQL

= Provides explicit reference to the collection of
objects within each group or partition

= Having clause
= Used to filter partitioned sets

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 12- 59

Overview of the C++ Language
Binding in the ODMG Standard

s Specifies how ODL constructs are mapped to
C++ constructs

s Uses prefix d_for class declarations that deal
with database concepts
s Template classes
= Specified in library binding

= Overloads operation new so that it can be used to
create either persistent or transient objects

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 60

Summary

= Overview of concepts utilized in object databases

= Object identity and identifiers; encapsulation of
operations; inheritance; complex structure of
objects through nesting of type constructors; and
how objects are made persistent

= Description of the ODMG object model and object
guery language (OQL)

= Overview of the C++ language binding

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 12- 61

