
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Chapter 12 Outline

 Overview of Object Database Concepts

 Object-Relational Features

 Object Database Extensions to SQL

 ODMG Object Model and the Object Definition

Language ODL

 Object Database Conceptual Design

 The Object Query Language OQL

 Overview of the C++ Language Binding

Slide 12- 2

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object and Object-Relational

Databases

 Object databases (ODB)

 Object data management systems (ODMS)

 Meet some of the needs of more complex

applications

 Specify:

 Structure of complex objects

 Operations that can be applied to these objects

Slide 12- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Overview of Object Database

Concepts

 Introduction to object-oriented concepts and

features

 Origins in OO programming languages

 Object has two components:

 State (value) and behavior (operations)

 Instance variables (attributes)

 Hold values that define internal state of object

 Operation is defined in two parts:

 Signature (interface) and implementation (method)

Slide 12- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Overview of Object Database

Concepts (cont’d.)

 Inheritance

 Permits specification of new types or classes that

inherit much of their structure and/or operations

from previously defined types or classes

 Operator overloading

 Operation’s ability to be applied to different types of

objects

 Operation name may refer to several distinct

implementations

Slide 12- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Identity, and Objects versus

Literals

 Object has Unique identity

 Implemented via a unique, system-generated

object identifier (OID)

 Immutable

 Most OO database systems allow for the

representation of both objects and literals (simple

or complex values)

Slide 12- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Complex Type Structures for Objects

and Literals

 Structure of arbitrary complexity

 Contain all necessary information that describes

object or literal

 Nesting type constructors

 Generate complex type from other types

 Type constructors (type generators):

 Atom (basic data type – int, string, etc.)

 Struct (or tuple)

 Collection

Slide 12- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Complex Type Structures for Objects

and Literals (cont’d.)

 Collection types:

 Set

 Bag

 List

 Array

 Dictionary

 Object definition language (ODL)

 Used to define object types for a particular

database application

Slide 12- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.1 Specifying the object types EMPLOYEE, DATE, and DEPARTMENT
using type constructors.

Slide 12- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.2 Adding operations to the definitions of EMPLOYEE and DEPARTMENT.

Slide 12- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations

 Encapsulation

 Related to abstract data types

 Define behavior of a class of object based on

operations that can be externally applied

 External users only aware of interface of the

operations

 Can divide structure of object into visible and

hidden attributes

Slide 12- 11

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations

 Constructor operation

 Used to create a new object

 Destructor operation

 Used to destroy (delete) an object

 Modifier operations

 Modify the state of an object

 Retrieve operation

 Dot notation to apply operations to object

Slide 12- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Persistence of Objects

 Transient objects

 Exist in executing program

 Disappear once program terminates

 Persistent objects

 Stored in database, persist after program termination

 Naming mechanism: object assigned a unique name

in object base, user finds object by its name

 Reachability: object referenced from other persistent

objects, object located through references

Slide 12- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.3 Creating persistent objects by naming and reachability.

Slide 12- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and

Inheritance

 Inheritance

 Definition of new types based on other predefined

types

 Leads to type (or class) hierarchy

 Type: type name and list of visible (public)

functions (attributes or operations)

 Format:

 TYPE_NAME: function, function, ...,

function

Slide 12- 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and

Inheritance (cont’d.)

 Subtype

 Useful when creating a new type that is similar but

not identical to an already defined type

 Subtype inherits functions

 Additional (local or specific) functions in subtype

 Example:

 EMPLOYEE subtype-of PERSON: Salary,

Hire_date, Seniority

 STUDENT subtype-of PERSON: Major, Gpa

Slide 12- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Type (Class) Hierarchies and

Inheritance (cont’d.)

 Extent

 A named persistent object to hold collection of all

persistent objects for a class

 Persistent collection

 Stored permanently in the database

 Transient collection

 Exists temporarily during the execution of a

program (e.g. query result)

Slide 12- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Object-Oriented Concepts

 Polymorphism of operations

 Also known as operator overloading

 Allows same operator name or symbol to be

bound to two or more different implementations

 Type of objects determines which operator is

applied

 Multiple inheritance

 Subtype inherits functions (attributes and

operations) of more than one supertype

Slide 12- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary of Object Database

Concepts

 Object identity

 Type constructors (type generators)

 Encapsulation of operations

 Programming language compatibility

 Type (class) hierarchies and inheritance

 Extents

 Polymorphism and operator overloading

Slide 12- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object-Relational Features:

Object DB Extensions to SQL

 Type constructors (generators)

 Specify complex types using UDT

 Mechanism for specifying object identity

 Encapsulation of operations

 Provided through user-defined types (UDTs)

 Inheritance mechanisms

 Provided using keyword UNDER

Slide 12- 20

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

User-Defined Types (UDTs) and

Complex Structures for Objects

 UDT syntax:

 CREATE TYPE <type name> AS

(<component declarations>);

 Can be used to create a complex type for an

attribute (similar to struct – no operations)

 Or: can be used to create a type as a basis for a

table of objects (similar to class – can have

operations)

Slide 12- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

User-Defined Types and Complex

Structures for Objects (cont’d.)

 Array type – to specify collections

 Reference array elements using []

 CARDINALITY function

 Return the current number of elements in an array

 Early SQL had only array for collections

 Later versions of SQL added other collection

types (set, list, bag, array, etc.)

Slide 12- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Identifiers Using Reference

Types

 Reference type

 Create unique object identifiers (OIDs)

 Can specify system-generated object identifiers

 Alternatively can use primary key as OID as in

traditional relational model

 Examples:

 REF IS SYSTEM GENERATED

 REF IS <OID_ATTRIBUTE>

<VALUE_GENERATION_METHOD> ;

Slide 12- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Creating Tables Based on the UDTs

 INSTANTIABLE

 Specify that UDT is instantiable

 The user can then create one or more tables

based on the UDT

 If keyword INSTANTIABLE is left out, can use

UDT only as attribute data type – not as a basis for

a table of objects

Slide 12- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Encapsulation of Operations

 User-defined type

 Specify methods (or operations) in addition to the

attributes

 Format:
CREATE TYPE <TYPE-NAME> (

<LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>

<DECLARATION OF FUNCTIONS (METHODS)>

);

Slide 12- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4a Illustrating some of the object features of SQL. Using UDTs as types
for attributes such as Address and Phone.

continued on next slide

Slide 12- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4b Illustrating some of the object features of SQL. Specifying UDT for
PERSON_TYPE.

continued on next slide

Slide 12- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Type Inheritance

 NOT FINAL:

 The keyword NOT FINAL indicates that subtypes

can be created for that type

 UNDER

 The keyword UNDER is used to create a subtype

Slide 12- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4c Illustrating some of the object features of SQL. Specifying UDTs for
STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of PERSON_TYPE.

continued on next slide

Slide 12- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4c (continued) Illustrating some of the object features of SQL.
Specifying UDTs for STUDENT_TYPE and EMPLOYEE_TYPE as two subtypes of
PERSON_TYPE.

continued on next slide

Slide 12- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Type Inheritance

 Type inheritance rules:

 All attributes/operations are inherited

 Order of supertypes in UNDER clause determines

inheritance hierarchy

 Instance (object) of a subtype can be used in

every context in which a supertype instance used

 Subtype can redefine any function defined in

supertype

Slide 12- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Creating Tables based on UDT

 UDT must be INSTANTIABLE

 One or more tables can be created

 Table inheritance:

 UNDER keyword can also be used to specify

supertable/subtable inheritance

 Objects in subtable must be a subset of the

objects in the supertable

Slide 12- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4d Illustrating some of the object features of SQL. Creating tables
based on some of the UDTs, and illustrating table inheritance.

continued on next slide

Slide 12- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Specifying Relationships via

Reference

 Component attribute of one tuple may be a

reference to a tuple of another table

 Specified using keyword REF

 Keyword SCOPE

 Specify name of table whose tuples referenced

 Dot notation

 Build path expressions

 –>

 Used for dereferencing

Slide 12- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.4e Illustrating some of the object features of SQL. Specifying
relationships using REF and SCOPE.

Slide 12- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary of SQL Object Extensions

 UDT to specify complex types

 INSTANTIABLE specifies if UDT can be used to

create tables; NOT FINAL specifies if UDT can be

inherited by a subtype

 REF for specifying object identity and inter-

object references

 Encapsulation of operations in UDT

 Keyword UNDER to specify type inheritance and

table inheritance

Slide 12- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

ODMG Object Model and Object

Definition Language ODL

 ODMG object model

 Data model for object definition language (ODL)

and object query language (OQL)

 Objects and Literals

 Basic building blocks of the object model

 Object has five aspects:

 Identifier, name, lifetime, structure, and

creation

 Literal

 Value that does not have an object identifier

Slide 12- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The ODMG Object Model and the ODL

(cont’d.)

 Behavior refers to operations

 State refers to properties (attributes)

 Interface

 Specifies only behavior of an object type

 Typically noninstantiable

 Class

 Specifies both state (attributes) and behavior

(operations) of an object type

 Instantiable

Slide 12- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Inheritance in the Object Model of

ODMG

 Behavior inheritance

 Also known as IS-A or interface inheritance

 Specified by the colon (:) notation

 EXTENDS inheritance

 Specified by keyword extends

 Inherit both state and behavior strictly among

classes

 Multiple inheritance via extends not permitted

Slide 12- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Built-in Interfaces and Classes in the

Object Model

 Collection objects

 Inherit the basic Collection interface

 i = o.create_iterator()

 Creates an iterator object for the collection

 To loop over each object in a collection

 Collection objects further specialized into:

 set, list, bag, array, and dictionary

Slide 12- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.6 Inheritance hierarchy for the built-in interfaces of the object model.

Slide 12- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Atomic (User-Defined) Objects

 Specified using keyword class in ODL

 Attribute

 Property; describes data in an object

 Relationship

 Specifies inter-object references

 Keyword inverse

 Single conceptual relationship in inverse directions

 Operation signature:

 Operation name, argument types, return value

Slide 12- 42

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.7 The attributes, relationships, and operations in a class definition.

Slide 12- 43

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Extents, Keys, and Factory Objects

 Extent

 A persistent named collection object that contains

all persistent objects of class

 Key

 One or more properties whose values are unique

for each object in extent of a class

 Factory object

 Used to generate or create individual objects via

its operations

Slide 12- 44

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Definition Language ODL

 Support semantic constructs of ODMG object

model

 Independent of any particular programming

language

 Example on next slides of a UNIVERSITY

database

 Graphical diagrammatic notation is a variation of

EER diagrams

Slide 12- 45

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.9a An example of a database schema. Graphical notation for
representing ODL schemas.

continued on next slide

Slide 12- 46

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.9b An example of a database schema. A graphical object database
schema for part of the UNIVERSITY database (GRADE and DEGREE classes are not
shown).

Slide 12- 47

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.10 Possible ODL schema for the UNIVERSITY database in Figure
12.9(b).

continued on next slide

Slide 12- 48

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.10 (continued) Possible ODL schema for the UNIVERSITY database in
Figure 12.9(b).

Slide 12- 49

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Interface Inheritance in ODL

 Next example illustrates interface inheritance in

ODL

Slide 12- 50

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.11a An illustration of interface inheritance via “:”. Graphical schema
representation.

continued on next slide

Slide 12- 51

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Figure 12.11b An illustration of interface inheritance via “:”. Corresponding
interface and class definitions in ODL.

Slide 12- 52

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Object Database Conceptual Design

 Differences between conceptual design of ODB

and RDB, handling of:

 Relationships

 Inheritance

 Philosophical difference between relational model

and object model of data

 In terms of behavioral specification

Slide 12- 53

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Mapping an EER Schema to an ODB

Schema

 Create ODL class for each EER entity type

 Add relationship properties for each binary

relationship

 Include appropriate operations for each class

 ODL class that corresponds to a subclass in the

EER schema

 Inherits type and methods of its superclass in ODL

schema

Slide 12- 54

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Mapping an EER Schema to an ODB

Schema (cont’d.)

 Weak entity types

 Mapped same as regular entity types

 Categories (union types)

 Difficult to map to ODL

 An n-ary relationship with degree n > 2

 Map into a separate class, with appropriate

references to each participating class

Slide 12- 55

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Object Query Language OQL

 Query language proposed for ODMG object

model

 Simple OQL queries, database entry points, and

iterator variables

 Syntax: select ... from ... where ... structure

 Entry point: named persistent object

 Iterator variable: define whenever a collection is

referenced in an OQL query

Slide 12- 56

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Results and Path Expressions

 Result of a query

 Any type that can be expressed in ODMG object

model

 OQL orthogonal with respect to specifying path

expressions

 Attributes, relationships, and operation names

(methods) can be used interchangeably within the

path expressions

Slide 12- 57

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Features of OQL

 Named query

 Specify identifier of named query

 OQL query will return collection as its result

 If user requires that a query only return a single
element use element operator

 Aggregate operators

 Membership and quantification over a collection

Slide 12- 58

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Features of OQL (cont’d.)

 Special operations for ordered collections

 Group by clause in OQL

 Similar to the corresponding clause in SQL

 Provides explicit reference to the collection of

objects within each group or partition

 Having clause

 Used to filter partitioned sets

Slide 12- 59

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Overview of the C++ Language

Binding in the ODMG Standard

 Specifies how ODL constructs are mapped to

C++ constructs

 Uses prefix d_ for class declarations that deal

with database concepts

 Template classes

 Specified in library binding

 Overloads operation new so that it can be used to

create either persistent or transient objects

Slide 12- 60

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary

 Overview of concepts utilized in object databases

 Object identity and identifiers; encapsulation of

operations; inheritance; complex structure of

objects through nesting of type constructors; and

how objects are made persistent

 Description of the ODMG object model and object

query language (OQL)

 Overview of the C++ language binding

Slide 12- 61

